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Working in a quantum logic framework and using the idea of Galois connec- 
tions, we give a natural sufficient condition for superposition and inaccessibility 
to give the same closure map on sets of states. 

1. I N T R O D U C T I O N  

The ideas of  superposition and disturbing measurement are central to 
quantum theory. In this paper  we link these two ideas in a quantum logic 
framework making systematic use of  Galois connections. After reviewing 
the elementary theory of  Galois connections (Section 2), we consider two 
such, induced by two relations (Section 3). 

First, we consider the relation between a state ~ and an event ( y e s - n o  
proposition) a of  making certain: ~(a) = 1. This relation induces a Galois 
connection, which itself induces the superposition closure map  on the 
power set of  states. Second, we consider the relation between states ~, 1~ of  
inaccessibility: that there is an event a such that ~(a) = 1 and ]~(a) = 0. This 
relation induces a Galois connection, and so a closure map on the power 
set of  states. 

It is then natural to ask for the conditions under which these closure 
maps coincide, especially since the idea of  disturbing measurement links 
superposition and inaccessibility. Thus, suppose that with each event a 
there is associated a state-transition map Ga on the set of  states, and that 
these Ga are of  first kind in the usual sense. Then, as we shall see in Section 
3, the ranges of  the Ga must be closed under the superposition closure map,  
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and the domains must be open in the associated interior map. Suppose, on 
the other hand, that inaccessibility constrains the Ga in that a is inaccessi- 
ble to fl iff for no a, Ga(f l )=a,  i.e., iff fl cannot transit to ~ under 
measurement of any event. Then, as we shall see, if inaccessibility is 
symmetric, we have that the ranges of  the Ga must be closed under the 
inaccessibility closure map, and the domains must be open in the associated 
interior map. 

In Section 4, we give a sufficient condition for these closure maps to 
coincide. The condition is natural in two senses: it is expressed in terms of 
corresponding closure maps on the power set of events, and it is equivalent 
to the conjunction of two assumptions familiar in quantum logic. 

We will omit most proofs of  results, since space is short and they are 
elementary. Besides, the connections between superposition and inaccessi- 
bility are familiar in quantum logic; so our aim in presenting these 
connections in terms of Galois connections is partly pedagogic. On the 
other hand, we think our results are of some technical interest: we stress 
that we will not require that the lattice L of events is orthomodular,  nor 
that states be probability measures on L, nor that the set of states be 
a-convex. 

2. NOTATION AND BACKGROUND RESULTS 

We first summarize the elementary theory of Galois connections; for 
clarity, we organize the material in subsections. We indicate a result by a 
" T "  for " theorem".  We will omit the proofs which are elementary and in 
some cases well known [e.g., some of  what follows is in Abbott  (1969, pp. 
128-133)1. 

2.1. Closure Maps 

A closure map on any poset (X, -< ) is a map x ~ x *  of X into itself 
s.t.: (C1) x <-y ~ x * - y *  (isotone); (C2) x <-x* (extensive); (C3) 
x* = x** (idempotent). An element x of X is called closed iff x = x*. An 
interior map on any poset (X, -< ) is a map x ~ x  ~ of X into itself s.t.: 
(C1); (C2 ~ x ~ -< x (intensive); (C3). An element x of  X is open iff x = x ~ 
A closure map * on an orthoposet (i.e., orthocomplemented poset) 
(X, ---, •  defines an associated interior map as follows: x ~x~177 • 
And similarly, vice versa. So on an orthoposet, we can think of  being given 
a closure map and interior map together. We shall concentrate on closure 
maps, saying little about interior maps. 

1".2.1. If  (X, - < ) =  (X, v ,  ^ ) is a complete lattice with a closure 
map *, then the closed elements of  X form a complete lattice, X* say, with 
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the meet in X* the same as the meet /x in X, and the join in X* equal to 
the closure of the join v in X. (So x* is the smallest closed element 
containing x.) 

T.2.2. If  (X, --< ) is a poset and (Y, < ) is a complete sub-meet-semi- 
lattice of (X, -< ) s.t. for all x ~X there is y e Y with x -< y, then (Y, -< ) 
defines a closure map on X by x* = A { y e Y :  x <- y}. 

It follows that if (X, ~ ) is a complete meet-semilattice with a 1, then 
the closure maps on X are in 1-1 correspondence with X's complete 
sub-meet-semilattices. 

2.2. Relations Induce Closure Maps 

Suppose given two sets X, Y, and a binary relation R from X to Y: we 
write xRy for (x, y ) ~ R .  R determines a converse relation R'  from Y to X. 
We define a map R from the power set P(X) to P(Y): 

if x ~ X, R(x),= {y ~ Y: xRy } 

if W ___ X, R(W) ,= {y ~ Y: for all x e W, xRy } 

As usual we interpret R(~Z~) vacuously, and set R ( ~ )  = Y and R ' ( ~ )  = X. 
R determines and is determined by the set {R(x): x sX}.  

T.2.3. The map R: P(X) --* P(Y)  is antitone; i.e., U ~_ W ~ R(W)  ~_ 
R(U). And for all We_X, R ( W ) =  Ox~wR(x)= Ov=_wR(U). 

Therefore the family of sets R(W), W _ X, form a complete sub-meet- 
semilattice of (P(Y), _~). Furthermore, Y, i.e., the 1 of P(Y), is in this 
family since R ( ~ ) =  Y. By T.2.2, this family defines a closure map on 
P(Y): given any Z _ I1, its closure Z* is the smallest set of the form R(W) 
containing it, for W _ X. 

Similarly the converse relation R'  gives a family {R'(Z): Z _c y} of 
subsets of X; and this induces a closure map on P(X). 

2.3. Galois Connections 

A Galois connection between a poset (X, < ) and another poset 
(Y, < )  is a pair of maps ( g , h )  s.t. both: 

(i) g : X ~ Y  and h: Y--*X are each antitone; i.e., for w,x~X,  
w <- x ~ g(w) >- g(x); and similarly for h; 

(ii) for all x~X,  x<(hog) (x ) ,=h(g(x ) ) ;  and for all y~Y ,  
y < (g o h)(y). 

A classic source for the notion of a Galois connection is Ore (1944). 
The notion can be motivated in a way parallel to Blyth and Janowitz's 
motivation for the better-known notion of residuated map [one takes 
antitone analogs of Theorems 2.1-2.7 of Blyth and Janowitz (1971).] But 
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for us it is more important to describe how Galois connections are related 
to closure maps and relations. 

2.4. A Galois Connection Induces a Closure Map 

First we have: 
T.2.4. If  (g, g'~ is a Galois connection between posets X and Y, then 

the composition (g'  o g) is a closure map on X and (g o g') is a closure map 
on Y. The closed elements in X (resp. Y) are the images o f g '  (resp. g). Any 
element in X (resp. Y) has the same image under g (resp. g') as its closure: 
that is, 

g(x) = (g o g' o g)(x); g ' (y)  = (g '  o g o g ' ) (y)  

We can also extend T.2.1, using the idea of  dual isomorphism. Recall that 
isomorphism for posets is not just a matter of  there being an isotone 
bijection from one to the other. For  an isotone bijection might not have an 
isotone inverse. So we say that two posets are isomorphic iff there is an 
isotone bijection between them, f say, with an isotone inverse. This is 
equivalent to: x < y i f f f (x )  <f(y) .  Similarly, an antitone bijection might 
not have an antitone inverse. So we way that two posets are dually 
isomorphic iff there is an antitone bijection between them, f say, with an 
antitone inverse. This is equivalent to x < y  i f f f (x )  >f(y) .  Then we can 
extend T.2.1 as follows: 

T.2.5. If  (g, h )  is a Galois connection between complete lattices X 
and Y, then the sets X(h o g) and Y(g o h) of  closed elements of  X and Y, 
respectively, are complete lattices and g and h are dual isomorphisms 
between them. That  is, g and h are antitone bijections on the sets of  closed 
elements, and the products (h o g) and (g o h) are the identity maps on 
X(h o g) and Y(g o h), respectively. 

2.5. A Relation Induces a Galois Connection 

T.2.6. A relation R between X and Y induces a Galois connection 
between P(X) and P(Y); via the maps in Section 2.2, R: P(X) --, P(Y) and 
R': P(Y) ~ P(X). 

Remarks. (1) By T.2.4, a closure map Z ~ R ( R ' ( Z ) )  [resp. W ~  
R'(R(W))] is defined on P(Y) [resp. P(X)]. And for W ~ X ,  Z ~_ Y: 
R(W) = R(R'(R(W))) and R ' (Z)  = R'(R(R'(Z))). (2) Since P(X) and P(Y) 
are complete lattices, T.2.5 implies that the lattices of  closed elements are 
dual isomorphic, the dual isomorphisms taking meets into joins and vice 
versa. In Section 4 we shall use the formula for the reversal of  joins and 
meets on subsets Z~, Z2 ~ Y. So we state it separately: 
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Corollary to T.2.6. If  R is a relation from X to Y, and Z1, Z2 ~ Y, 
then: 

R(R'(Z1)  c~ R'(Z2)) = R(8 ' (Z1  u Z2)) 

R ( R ' ( Z  1 ) k..) R ' ( Z 2 )  ) = R ( R ' ( Z  1 )) f~ R ( R ' ( Z 2 )  ) 

(3) The closure map induced by a relation via the Galois connection it 
induces is the same as the closure map in Section 2.2, as in the following: 

T.2. 7. If  R is a relation from X to Y, and Z _~ II, then the smallest set 
Z*,  of  the form R(W), W ~_ X, containing Z is R(R'(Z)); and similarly for 
Wc_X. 

It will be convenient to make the following definition. If  R is a relation 
from X t o  Y, and W _c Xwith  W = R'(R(W)), I will say that Wis R-closed. 
Similarly, Z ___ Y with Z = R(R'(Z)) is R'-closed. 

3. T H E  S U P E R P O S I T I O N  AND INACCESSIBILITY LATTICES 

We first review how the existence of  superpositions endows the power 
set of  states with a closure map, which gives a complete lattice of  closed 
sets of  states. We remark that the domains and ranges of  the state-transi- 
tion maps for first-kind measurements are respectively open and closed 
sets. We then assume that states also have a binary relation I of  inaccessi- 
bility that constrains these domains and ranges. In accordance with T.2.3 
(or T.2.4 and T.2.6), I induces a closure map, and so a complete lattice. We 
thus have two closure maps and two lattices which are interpreted in terms 
of  first-kind measurement. 

Notation: We use Z for the set of  all states; ~, fl, ~, for states; T, U, for 
sets of  states; L for the set of  events; a, b, c for events; A, B, C for sets of  
events. We will introduce in a piecemeal fashion the assumptions ( "A")  
about events and states that we need, so as to clarify which results depend 
on which assumptions. As mentioned in the Introduction, we shall not need 
to assume that the lattice of  events is orthomodular,  nor that the states are 
probability measures, nor that the set of  states is a-convex. 

3.1. The Superposition Lattice ~^ 

To define this we only need assume: 
A.3.0. L is a nonempty set, and Z a nonempty set of  functions from 

L to [0, 1]. For  any A ___ L, and for any T ~ E, we define 

SI(A) ..= {a~Z: for all a~A, a(a) = 1} 

LI (T) :=  {a~L: for all a ~ l ;  a(a) = 1} 



2310 Butterl]eld and Melia 

[Here, it is to be understood that S I ( ~ )  = E, and L I ( ~ )  = L.] We then 
define 

T ^ ..= S I (LI (T) )  

~ T ^ is called a superposition of elements of T; ^ is the superposition 
map. 

Superposition is a closure map on the power set P(Y~). Since P(Y.) is a 
complete lattice under set-inclusion, T.2.1 implies that the set of  ^-closed 
sets of states forms a complete lattice with set-intersection as meet, and 
closure of set union as join. We call this lattice E ^. 

The closure map ^ is induced by a Galois connection which is itself 
induced by a relation. For  observe that (L1, S1) is a Galois connection 
between P(Y~) and P(L); and the closure map it induces in P(E) is the 
superposition operation. T.2.5 then implies that E^ is dual isomorphic by 
the map L1 to the sets of events that are closed under the closure map on 
P(L) given by A ~ L I ( S I ( A ) ) .  Furthermore, the relation from Y. to L, "a 
makes a certain," i.e., a(a) = 1, induces this Galois connection by T.2.6. 

We can also define: 

S0(A)..= {a ~ :  for all a ~A, ~(a) = 0} 

L0(T) ,=  {a ~L: for all a s T, ~(a) = 0} 

and show similarly that T--, S0(L0(T)) is a closure map on P(E) induced 
by the relation from E to L, "~ makes a impossible," i.e., ~ (a )=  0. 
However, given a natural assumption, this map is the same as 
T ~ S I ( L I ( T ) ) .  The assumption which we make from now on is: 

A.3.1. L is an orthoposet; the states in E "mesh" with L 's  orthocom- 
plement _L, in the sense that, for all a, for all a: a(a) = 0 iff a ( a ' )  = 1. 

(Think of  _L as transposing the Yes and No labels for events in L.) We 
then have: 

T.3.1. For  all T ~_ ~, SI (LI (T) )  = S0(L0(T)). 

3.2. The Superposition Lattice ]~ ̂  and Measurement  

Now suppose that measurements disturb states, in the sense that for 
each event a, there is a map Ga on the states that gives the transitions 
which states undergo when yielding Yes for measurement of a. And 
suppose that the Ga are of first kind, in the sense that: 

(i) If ~(a) = 1, then Ga(~) = ~; i.e., Ga fixes states that make a certain. 
(ii) For  all ~, [Ga(~)](a) = 1; i.e., any state arising from a Yes outcome 

makes a certain. 
It follows from this that the ranges of the maps Ga are closed under 

superposition. For  (i) implies that Sl(a)~_ ran(Ga); and (ii) implies that 
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ran(Ga) ___ Sl(a). So Sl(a) = ran(Ga). But Sl(a) must be ^-closed: by T.2.4, 
or directly by observing that if c~sSl(Ll(Sl(a))) ,  i.e., ~ makes certain all 
the events that all of  Sl(a) agree as certain, then ~ must make a certain. 
[Section 4 will treat the converse: is every ^-closed set a ran(Ga) for some 
Ga?] 

The relation of  Z ^ to the dom(Ga) is a bit more subtle, given that we 
do not assume that the states are measures. The domains are usually 
defined by one of 

dom(Ga) := {~: ~(a • r 1} or dom(Ga) .'= {~: a(a) v ~ 0} 

These are trivially equivalent if the states are measures; and equivalent iff 
A.3.1. And once we recall that ran(Ga) = Sl(a), A.3.1 is plainly equivalent 
to 

(Sl(a• c = (ran(Ga• e = dom(Ga) 

Recalling from Section 2.1 that any closure map ^ on a power set has an 
associated interior map: T---rT~ c, it follows that dom(Ga) is 
open in the associated interior map for superposition [take T = (Sl(a• 

3.3. The Inaccessibility Lattice E # 

Now suppose that there is a binary relation Q on E that constrains the 
maps Ga in the sense that ~Qfl := 0~ is accessible to fl iff flQ'~ ,= fl can transit 
to ~ under measurement of  some event a. Q constrains the Ga's in that Q 
is given once and for all on E: there is not a separate relation for each a. 
But for now, we need not choose a particular Q (we will do so in Section 
4). 

Recall from Sections 2.2, 2.4, and 2.5 that any relation R on E induces 
a complete lattice of  R-closed sets of  states, i.e., sets T s.t. R'(R(T))  = To 
So one could consider the Q-closed sets forming an accessibility lattice. It 
turns out that the ran(Ga) and dom(Ga) (and so by Section 3.2, Y~^) are 
connected not to accessibility, but to its complement relation, inaccessibil- 
ity, L And this connection requires that inaccessibility is symmetric; but it 
does not need A.3.1. To be precise, we have: 

T.3.2, If  inaccessibility I is symmetric, every ran(Ga) is/-closed.  
Proof Consider ran(Ga), for Ga of  first kind, in terms of  accessibility, 

or its converse, "transitability." We get the condition ~ r a n ( G a )  iff 
cannot transit to any state that itself cannot transit to any element of  
ran(Ga). If  Q (equivalently, its complement I)  is symmetric, then this 
condition is equivalent to ran(Ga) being/-closed. Using Section 2.6, T.2.10, 
and definition following, we have T _ Z is / -c losed iff T = I '(I(T)) iff any 

that bears I to all of  I(T)  is in T i f f  any nonmember of  T does not bear 
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I to all of  I (T)  iff for any nonmember 7 of T there is a fl e l ( T )  s.t. fl can 
transit to 7. Provided I is symmetric, this condition for T being/-closed is 
the above condition on ran(Ga). �9 

Notation. We recall the complete lattice o f / - c losed  sets of  states the 
inaccessibility lattice. We write the closure map (I o I)  on P(E) as # ,  and 
we call the inaccessibility lattice E # .  

Remark. The definition of  E # by the map I on P(E) generalizes a 
familiar example: the definition of  the lattice of subspaces of  a vector space 
that is equipped with an inner product by the annihilators of  sets of 
vectors. 

Turning to domains, it is easier to prove dom(Ga) i s / -open  (use T.2.6, 
Remark 1). 

T.3.3. If  I is symmetric, every dom(Ga) i s / -open .  
Remark. If we add assumption A.3.1, we can avoid the compli- 

cated proof  of  T.3.2 because T.3.2 becomes a corollary of T.3.3: given 
dom(Ga) is /-open, we conclude by A.3.1 that ran(Ga • = (dom(Ga)) c is 
/-closed. 

Finally, note that accessibility being symmetric and reflexive makes its 
complement I symmetric and irreflexive. Then the map I: P(E)  ~ P(E) is an 
orthocomplement on the / -c losed  sets. For  we have (using T.2.5): 

T.3.4. If  R is a symmetric and irreflexive relation on Y~, then the map 
R: P(Z) ~ P(E) is an orthocomplement on the complete lattice of  R-closed 
subsets of E. 

Furthermore, it is natural to assume that I is irreflexive; i.e., Q is 
reflexive, every state can transit to itself under measurement, every state 
makes some event certain. This holds if the trivial event 1 (whose existence 
is secured by L's  being an orthoposet, A.3.1) satisfies: ~(1) = 1 for all ~ ~E. 
In fact we shall need to assume this later on and so we adopt: 

A.3.2. For  all ~eE ,  ~(1) = 1. 
In view of A.3.1, an equivalent statement is: for all ~ E ,  ~(0) = 0. 

4. T H E  IDENTITY OF T H E  LATTICES ~ ^ AND 1~ # 

Our main aim is to give a sufficient condition, cast in terms of  Galois 
connections, for the lattices E ^ and E # to be identical. Section 4.1 chooses 
an inaccessibility relation. Section 4.2 presents the condition, arguing that 
it is natural. Section 4.3 proves that the condition is sufficient. Section 4.4 
shows that the condition is equivalent to the conjunction of  two assump- 
tions familiar in quantum logic. Section 4.5 gives counterexamples to 
some conjectures that arise. Section 4.6 relates our results to some previous 
work. 
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4.1. Choosing the Inaccessibility Relation 

The lattice Z # of  course varies with the choice of the relation I on Z. 
Recall that in Hilbert space quantum theory, an ideal measurement projects 
rays (states) into the (a = 1)-eigenspace; so inaccessibility is orthogonality. 
This suggests the definition 

sift  iff there is a e L  with a(a) = O, fl(a) = 1 

So defined, ! is irreflexive. And A.3.1 implies that it is symmetric. From 
now on, we shall assume this choice of  the relation L We will need some 
facts about the relation between I and the orthocomplement • in L. A.3.1 
gives us: 

T.4.L czlfl iff there is a ~ L  s.t. ~(a) = 1, fl(a J-) = 1 
iff there is a ~ L  s.t. ~(a) = 0, fl(a • = 0 

We will later need to assume that the states are isotone functions on L, and 
this enables us immediately to relate I to orthogonality in L. So now 
assume: 

A.4.1. States are isotone: for all events and states, a < b = ~  
~(a) -- ~(b). 

T.4.2. ~Ifl iff there are a, b ~ L  s.t. a is orthogonal to b, ~ (a )=  1, 

fl(b) = 1. 

4.2. Motivating the Sufficient Condition of Identity 

For the lattices Z ^ and E # to be identical, the ranges of  the two 
closure maps ^ and # must be the same, for the ranges just are the lattices 
of closed elements. In fact, the maps must be identical, as shown by: 

T.4.3. ~ ^  = Z #  iff for all T ~ Z ,  T ^ = T # .  
We therefore ask: under what conditions does a closure map on P(Z) 

induced via a Galois connection by a relation I on E coincide with a 
closure map on P(E) induced by a Galois connection (L1, S1) (or  equiva- 
lently, in view of  T.3.1: by (L0, SO)) from P(Z) to P(L)? 

To tackle this question, we first remark that an analogous question 
can be asked about P(L),  but, as we shall see, the analogous question is not 
equivalent. For, recall that (i) orthogonality, being a relation on L, induces 
a Galois connection and so a closure map on P(L); (ii) the Galois 
connection (S1, L1)  from P(L)  to P(E) induces a closure map on 
P(L): A --, LI(SI(A));  (iii) similarly to (ii), the Galois connection (SO, L0)  
induces a closure map on P(L).  So we can ask: do the closure maps on P(L)  
induced by (S1, L1)  and (SO, L0)  coincide, like the corresponding maps 
on P(Z)? And whether or not they coincide, under what conditions does 
the closure map on P(L)  induced by orthogonality coincide with either of  
them? 
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Furthermore, one naturally expects these questions about P(L) to be 
related to those about closure maps on P(Y,), since I on Z is related to 
orthogonality in L (T.4.1, T.4.2). So one naturally conjectures: the same 
closure map on P(Z) is induced by inaccessibility and by superposition iff 
the same closure map on P(L) is induced by orthogonality and by either 
A ~LI (SI (A) )  or A ~L0(S0(A)). 

As we shall see, the " i f "  statement is true when we make an appropri- 
ate choice, namely A ~L0(S0(A)), for the closure map on P(L) corre- 
sponding to superposition. In other words, we have a sufficient condition, 
natural from the point of view of Galois connections, for the identity of X ̂  
and X # .  But the "only i f"  statement is false (the reason for this asymme- 
try is essentially that L is a poset, while X is not). We spend the rest of this 
subsection describing the choice A ~ L0(S0(A)). 

Note first that the closure maps on P(L) induced by <S1, Ll> and 
<S0, L0> do not coincide. By A.4.1, LI(SI(A)) is a filter in L and 
L0(S0(A)) is an ideal in L. We can say more, if we now assume: 

A.4.2. L is complete. 
With this assumption, we get this result, suggesting the choice 

A ~ LO(SO(A)). 
T.4.4. The closure map on P(L) induced by orthogonality 3_ is 

A ~ LL(A)  = (sup A)+. So the L-closed sets are principal ideals in L. 
Corollary to T.4.4. The closure maps on P(L) induced by orthogonal- 

ity _1_ and by (S0, L0> coincide iff for all A _ L, (sup A)+ = L0(S0(A)); iff 
for all A ___ L, sup[L0(S0(A))] = sup A eL0(S0(A)). 

Note, however, that we could work with A ~ LI(SI(A)) by "reversing 
the order in the lattice L";  i.e., by using the relation L '  say, defined in 
terms of L by 

a_l_'b iff alLb• i.e., iff a --- b • 

This gives us (again using A.4.2): The closure map on P(L) induced by L '  
is A--* .I_'_I_'(A)= (infA)l". So the closure maps induced by L '  and by 
<S1, Ll> coincide iff for all A __. L, (infA)~ = LI(SI(A)); iff inf[Ll(Sl(A))] 
= infA e LI(SI(A)). 

Furthermore, one pair of maps coincides iff the other does. That is: 
_l_LL = L0.S0 iff L'_l_' = L1.S1. To prove this, we define: for all A ~_ L, 
AJ-,={aeL: a• It is then easy to show: beA~ iff b ie(A•  and so, 
(sup A ) Z =  inf(A• And then it is easy to prove: 

T.4.5. sup[L0(S0(A))] = sup A eL0(S0(A)) iff inf[Ll(Sl(A))] = infA 
LI(SI(A)). 

Thus we can choose whether to work either with L and <SO, LO>, or 
with 3_' and <S1, Ll>. We choose the former. 
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4.3. Sufficiency 

To prove the superposition and inaccessibility lattices identical from 
the assumption •177  = L0(S0(A)), we need the notion, familiar in quan- 
tum logic, of  supports (carriers). Supports are normally defined while 
assuming that states are probability measures on L, assumed to be an 
orthomodular poset. Thus one normally defines 

a is the support of  ~ iff LI(~) = {bsL:  a <- b} 

The support if it exists is unique and is written s(~). The fact that ~ is a 
probability measure implies another useful characterization: 

a = s(~) iff for all b, ~(b) = 0 iff a•  

Thus a = s(~) iff L0(~) = • and L0(~) = [s(~)~]~. Similarly, one defines 
for a set of  states T: 

a i s s ( T )  i f f L l ( T ) = { b ~ L : a < b } ;  or i f f L 0 ( T ) = { b ~ L : a 2 . b }  

so that L 0 ( T ) =  (s(T)• 
However, states need not be probability measures for the definition of  

supports, nor for the above characterizations. It is easy to check that A.3.1, 
A.3.2, and A.4.1 together imply the equivalence of  the above characteriza- 
tions of  support. And A.4.2 (L is complete) gives two further usual results, 
without states being measures: 

(1) If  each state has a support, then the support of  any set of states 
must exist and it is the join of  its members' supports: 

(2) ~ has a support iff VA _~ L, if r a t A ,  a(a) = 1, then a( infA) = 1. 
That is, a has a support iff VA e L ,  if ' t a rA ,  a ( a ) = 0 ,  then 

~(sup A) = 0. 
We now have two lemmas and then the main result: 
T.4.6. L L ( A )  = L0(S0(A)) implies that every set of  states has a sup- 

port. 
7".4. 7. • 1 7 7  = L0(S0(A)) implies that for all T ~ Z, I (T)  = S0(s(T)). 
Proof  We prove this by proving 

x ( r )  = s 0 ( u ~  ~ {s(~)}) = S0(s ( r ) )  

For the first equation, S 0 ( U ~ r { s ( a ) } ) ~ I ( T )  is clear from Section 4.1's 
choice of the inaccessibility relation. A.4.1, isotonicity of states, yields the 
converse. For  the second equation, use the fact that every set of  states has 
a support, s(T)  = V ~ r s ( ~ ) ,  as follows. The ~ is trivial by A.4.1. For  the 
converse, _~, suppose flelhs: for all a~T,  fl~S0(s(a)). So fl~Sl(s(~)• so, 
by de Morgan's laws, we have s(fl) < / ~  r s(~) • = (s(T))J-. So fl(s(T)) = O. 

[] 
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Finally we get: 
T.4.8. Suppose that for all A, 3-3-(A)= L0(S0(A)). Then for all T, 

S0(3-(L0(T))) = I(T), and so II(T) = S0(L0(T)). 
Proof. SO. 3_.L0(T) = SO. 3_.[(s(T) J-) J,] = SO. 3_. 3_.(s(T)) = S0.L0.S0(s(T)) 

-=SO(s(T))=I(T). (The last two equations hold because of T.2.4, and 
T.4.7, respectively.) This implies I I (T)= {S0.L0}(T) [twice using Section 
2.1]. �9 

4.4. The Content of  3_3_ = LOS0 

Given our assumptions (especially that L is complete), it turns out that 
our sufficient condition for E ^ = E # is equivalent to the conjunction of 
two conditions familiar in quantum logic: the existence of supports, in 
Section 4.3's sense; and the set of states being strongly ordering in the sense 
of Beltrametti and Cassinelli (1981, p. 116), i.e.: 

Strong ordering: For all a, b, if Sl(a) _ Sl(b), then a < b. [Such a set 
of states is also called "rich" (Ptfik and Pulmannovfi (1991, p. 21).] As we 
saw in Section 4.3 about supports, this condition is normally considered for 
states as measures. But we consider it on our more general states. In 
particular, our A.3.1 is enough to get the equivalence, useful for us: 

T.4.9. The states are strongly ordering iff if S0(a) _ S0(b), then a > b. 
We have already seen that _L & = LOS0 implies that every set of states has 
a support (T.4.6). We also have (using T.4.4): 

T.4.10. _El = LOS0 implies strong ordering. 
Conversely, we have, using L complete, isotonicity, and T.4.9 (so 

A.3.1): 
T.4.11. If  every state has a support and the states are strongly 

ordering, then 3-A_ = LOS0. 
Proof The existence of supports and the second equation of T.4.7 

imply: if ~sS0(A), then ~ ( s u p A ) = 0 .  So (supA)$~LOS0(A).  And 
(sup A)~ = .I__L(A) by TA.4. Now we show the converse inclusion ~ using 
strong ordering. Suppose b~LOS0(A), so S0(A)_S0(b). Supports and 
isotonicity imply that S0(supA)=  S0(A). So S 0 ( s u p A ) _  S0(b). Strong 
ordering implies that b -< sup A. So LOS0(A) _ (sup A)~ = l / ( A ) .  �9 

4.5. Examples  

First, we give a counterexample to Section 4.3's condition being 
necessary. Consider the lattice and the set of just two states shown in Fig. 
1, where; 

States a b c a "  b l  c-L 
1 1 1 1 a 0 ~ ~ 1 ~ 

1 1 o o 
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a ~ "~b• 

Fig. 1 

Then we have aIfl, II(c~) = {e}, II(fl) = {fl}, and II = S0.L0. But we also 
have 

L0.S0({fl• = L0(fl) = {a • b • 0} # {b -~, 0} = b• = 2__l_({a, c}) 

and strong ordering fails: a • r b • while S0(a • = S0(b • = {fl}. 
Since our condition _I__L = LOS0 is sufficient but not necessary for 

H = SOL0, one asks whether it can be weakened while remaining sufficient. 
In view of  Section 4.4, the obvious question is: can one of  the conjuncts, 
supports or strong ordering, be dropped? 

The answer is No. Agreed, we can drop strong ordering and still prove 
"hal f"  o f / I  = S0L0. For  we have, using A.3.1, A.3.2, A.4.1 and A.4.2 (i.e., 
L is a complete orthocomplemented lattice, and states are isotone functions 
that "mesh" with L's  orthocomplement): 

T.4.12. If  every state has a support, then for all T_cE:  SOL0(T)_  
//( T). 

Proof Pick any T, ~ S O L 0 ( T ) ,  and fleI(T). We need to show ~Ifl, 
i.e., to find an event a s.t. ~(a) = 0 and fl(a) = 1. We construct a from those 
events on which fl disagrees with elements of  T. Define a . ' = A ~ r  {bsL: 
fl(b) = 1 and 7(b) = 0}. By isotonicity, a6L0(T) ,  so ~(a) = 0. By supports 
[cf. (2) just before T.4.6], fl(a) = 1. �9 

But we cannot strengthen the consequent of  T.4.12 to SOL0(T)= 
II(T). For consider the lattice above, but now add to ~ and fl a third state: 

a b c a • b • c -L 
7 0 0 0 1 1 1 

Then eI~I,/, not (eIT), and the conditions of T.4.12 are satisfied; but 

SOLO(7) = S0({a, b, c}) = {7} # {e, Y} = / / (7 )  

Again, strong ordering fails: Sl(c • c Sl(a• 
On the other hand, if we drop supports but retain strong ordering, 

we cannot prove the converse inclusion of T.4.12: we cannot prove 
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I I (T)  ~_ SOL0(T). For consider the following counterexample using six 
events and eight states (the smallest we have found): 

States a b c a-L b j- c • 
0 1 0 1 0 1 
1 o o 

1 1 7 0 �89 0 1 
I 1 1 1 t 

1 1 1 1 i 8 0 ~ E ~ 
1 1 0 l 1 1 

~- o 1 �89 1 0 t7 2 
1 q, I o �89 o 1 

This gives I (~ )=  {fl, ~, r/, q~}, so that 7~II(~). But y is not a member of  
SOL0(c 0 = {~}. And Sl(a) = {fl, r Sl(b) = {a, r} . . . . .  Sl(c • = {a, y, ~}; 
so that for no events x and y do we have Sl(x) _ Sl(y).  So strong ordering 
holds vacuously, and we can take the lattice to be as given in Fig. 2. 

4 . 6 .  R e l a t i o n  to  P r e v i o u s  W o r k  

We end by briefly relating our results to some previous work. As we 
said in Section 1, the novelties here are the explicit use of  Galois connec- 
tions and the allowance of nonorthomodular lattices and of states that are 
not probability measures. We shall follow the order in which we introduced 
the main concepts: considering superposition, then inaccessibility, and then 
very briefly supports. 

Our superposifion closure map T--, T ^ is the usual notion of superpo- 
sition within quantum logic. It goes back at least to Varadarajan (1968, pp. 
116-117, 160). If  we consider mixtures (i.e., convex combinations of 
states), then T ^ trivially contains mixtures of elements of T. Indeed, with 
common rich assumptions (e.g., that states are probability measures), one 

a • b J - i c  • 

Fig. 2 
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can characterize the distinction between classical and quantum mechanics 
in terms of  whether all superpositions are mixtures. The reason is essen- 
tially that if L is a separable Boolean a-algebra of  subsets of  a given set X, 
then the pure probability measures on L are precisely the so-called concen- 
trated measures (Varadarajan, 1968, Theorem 6.6; Gudder, 1970, p. 1038, 
Theorem 2). This implies that there are no pure superpositions (i.e., if 
and all of  T are pure, then ~ ~ T ^ iff ~ e T) and every ^ -closed set of  states 
is determined by a subset of  X. It also implies that L is isomorphic to Z ^, 
so that Z ^ is Boolean. 

Since in Hilbert space quantum theory there is a corresponding 
isomorphism, Varadarajan suggested that the superposition principle be 
defined as asserting that L is isomorphic Z ^. Gudder proved this principle 
for a general quantum logic, assuming the existence of  supports, strong 
ordering, and states as probability measures (Gudder,  1970, pp. 1039- 
1040, Theorem 4; see also Beltrametti and Cassinelli, 1976, pp. 377-383; 
1981, pp. 120-122). Gudder 's  isomorphism map is 

SI: a~L--.Sl(a)~Z^; with inverseT~s(T) 

We shall briefly describe how our weaker assumptions imply the same 
isomorphism (the pattern of  proofs, omitted here, is like Gudder's). There 
are three reasons for doing so. (1) Section 3.2 raised the question whether 
every ^-closed set is an Sl(a), i.e., a ran(Ga). This isomorphism makes the 
answer Yes. (2) This isomorphism gives us another proof  of  the identity of  
E ^ and E # .  (3) This isomorphism maps the orthocomplement • in L onto 
the orthocomplement I on E ^ = E # .  

Since Sl(a) is ^-closed, the map SI:a~L-.SI(a)  is into Z ^. Since 
states are isotone, it is order-preserving. To show that it has an inverse, we 
use supports of sets of  states. We easily have the two lemmas (using strong 
ordering for the second), and then the superposition principle: 

T.4.13. If  T is a nonempty subset of  Z, then T ^ = SI(s(T)). 
T.4.14. For all a~L, a v~O, a = s(Sl(a)). 
T.4.15. a -~S l ( a )  is an isomorphism from L to Z ^ with T ~ s ( T )  as 

inverse. 
Let us state separately the Yes answer to Section 3.2's question: 
Corollary to T.4.15. If  T e E  ^, then T = SI(s(T)) = ran(G(s(T))). 
Reasons 2 and 3 above involve our second main concept, inaccessibil- 

ity, to which we now turn. [For lack of  space, we cannot further discuss 
superposition; e.g., the connection with sectors (Pt~k and Pulmannov/t, 
1991, pp. 61-78).] We used the idea of  disturbing measurement to motivate 
inaccessibility (cf. Section 4.1). This kind of  strategy goes back at least to 
Pool (1968), who deduced some features of L from axioms governing the 
state-transition maps Ga, using especially results of  Foulis (1960) (see, e.g., 
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Beltrametti and Cassinelli, 1981, pp. 177-190). And Section 4. l's definition 
of inaccessibility is now standard [e.g., it is the orthogonality of Gudder 
(1970, p. 1040), Beltrametti and Cassinelli (1981, p. 121), and Pthk and 
Pulmannov~ (1991, p. 76)]. Of course, T.3.4 assures that any definition of 
I as symmetric and irreflexive makes the map I an orthocomplement on the 
lattice E # of/-closed sets. But this definition of I meshes with • in the 
sense of reasons 2 and 3 above. Thus one can prove (again, with only our 
assumptions about states and L) that: 

T.4.16. For all T___E: I ( T ) = S I ( s ( T ) ' ) ;  T ^ ~_T#;  T #  ~ T ^ ;  and 
the maps a ~Sl (a )  and its inverse T ~ s ( T )  preserve orthocomplements: 
Sl(a l)  = I(Sl(a)); and s(I(S)) = s(S)-L. 

The pattern of proof is in the order stated; one can follow, e.g., 
Beltrametti and Cassinelli (1981, pp. 300-301, C.2.4ff); the third and 
therefore fourth assertions (but not the first nor second; cf. our own 
T.4.12!) need strong ordering. 

As regards reason 2 above, we should also note what seem to us to be 
the first results that L's closure maps coincide (•  • = LOS0), and that Z's 
do (H = SOLO), where, contrary to our approach, the result does not 
assume that the other pair of maps coincides. Zierler (1961, p. 157, Lemma 
1.14) seems to be the first such "direct" proof that L's closure maps 
coincide. He uses the terminology of cuts to describe •177  and he assumes 
that each state has support and that E is strongly ordering. On the other 
hand, Guz (1978, p. 6, Lemma 5) gives a direct proof that Z's closure maps 
coincide, starting from similar assumptions. 

Finally, we should remark that the assumption of supports is espe- 
cially interesting in that in the form (2), just before T.4.6, it is the 
assumption of the Jauch and Piron (1963) no-hidden-variables theorem, 
criticized by Bell (1966, p. 450) and Bohm and Bub (1966, p. 474) [for 
discussion, see Jammer ( 1974, pp. 305- 306, 317-318)]. 
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